Label Ranking with Partial Abstention based on Thresholded Probabilistic Models
نویسندگان
چکیده
Several machine learning methods allow for abstaining from uncertain predictions. While being common for settings like conventional classification, abstention has been studied much less in learning to rank. We address abstention for the label ranking setting, allowing the learner to declare certain pairs of labels as being incomparable and, thus, to predict partial instead of total orders. In our method, such predictions are produced via thresholding the probabilities of pairwise preferences between labels, as induced by a predicted probability distribution on the set of all rankings. We formally analyze this approach for the Mallows and the Plackett-Luce model, showing that it produces proper partial orders as predictions and characterizing the expressiveness of the induced class of partial orders. These theoretical results are complemented by experiments demonstrating the practical usefulness of the approach.
منابع مشابه
Label Ranking with Abstention: Predicting Partial Orders by Thresholding Probability Distributions
We consider an extension of the setting of label ranking, in which the learner is allowed to make predictions in the form of partial instead of total orders. Predictions of that kind are interpreted as a partial abstention: If the learner is not sufficiently certain regarding the relative order of two alternatives, it may abstain from this decision and instead declare these alternatives as bein...
متن کاملLabel Ranking with Abstention: Predicting Partial Orders by Thresholding Probability Distributions (Extended Abstract)
We consider an extension of the setting of label ranking, in which the learner is allowed to make predictions in the form of partial instead of total orders. Predictions of that kind are interpreted as a partial abstention: If the learner is not sufficiently certain regarding the relative order of two alternatives, it may abstain from this decision and instead declare these alternatives as bein...
متن کاملLabel Ranking with Partial Abstention using Ensemble Learning
In label ranking, the problem is to learn a mapping from instances to rankings over a finite set of predefined class labels. In this paper, we consider a generalization of this problem, namely label ranking with a reject option. Just like in conventional classification, where a classifier can refuse a presumably unreliable prediction, the idea is to concede a label ranker the possibility to abs...
متن کاملPredicting Partial Orders: Ranking with Abstention
The prediction of structured outputs in general and rankings in particular has attracted considerable attention in machine learning in recent years, and different types of ranking problems have already been studied. In this paper, we propose a generalization or, say, relaxation of the standard setting, allowing a model to make predictions in the form of partial instead of total orders. We inter...
متن کاملLabel Ranking Methods based on the Plackett-Luce Model
This paper introduces two new methods for label ranking based on a probabilistic model of ranking data, called the Plackett-Luce model. The idea of the first method is to use the PL model to fit locally constant probability models in the context of instance-based learning. As opposed to this, the second method estimates a global model in which the PL parameters are represented as functions of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012